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Abstract-A solution procedure for thin-walled laminated composite beams is presented. Two
configurations are considered, producing extension-twist and bending-twist coupling, respectively.
The influence of coupling on the characteristic equations for free vibration is isolated. It is shown
that the characteristic determinant for extension-twist coupling can be expressed as the product of
the two decoupled ones. For the case of bending-twist coupling, a simple-quasi-decoupled procedure
is developed. This model is shown to provide accurate predictions for natural frequencies of practical
interest for slender, laminated composite box beams, © 1998 Elsevier Science Ltd. All rights
reserved.

INTRODUCTION

Thin-walled laminated composite beams provide additional flexibility to meet design
requirements efficiently. Coupling between deformation modes such as extension, bending
and twist can be tailored to produce favorable dynamic response and aeroelastic behavior.
From an analytical standpoint, the induced coupling results in additional complexity in the
formulation of the governing equations and solution procedures. A theory for the free
vibration analysis of anisotropic, thin-walled, closed-section beams was developed by Arm
anios and Badir (1995). Closed form expressions for the stiffness coefficients and inertia
parameters were provided. The governing equations provided by Armanios and Badir
(1995) are used in this paper to isolate the influence of coupling on the free vibration of
closed section beams exhibiting extension-twist or bending-twist coupling. The objective of
this work is to develop a systematic solution procedure that enables the prediction of
natural frequencies and mode shapes accurately and efficiently. A comparison between
coupled and uncoupled characteristic equations is performed in order to provide further
insight into the role of the coupling terms in the solution process. This comparison also
leads to the development of a simple, approximate solution methodology that results in
accurate prediction of the dynamic response in practical configurations of slender laminated
composite box beams.

ANALYTICAL MODEL

The analytical model used in the present investigation has been developed by Armanios
and Badir (1995) and, for convenience, a summary of the assumptions, notations and
governing equations will be briefly reviewed in the following:
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Fig. I. Coordinate systems and kinematic variables.

Considering a closed-section composite cylindrical shell, illustrated in Fig. I, it is
assumed that the geometric dimensions are such that

d« L

h«d

h« R (I)

where dis an upper bound of the cross sectional dimensions, L is the longitudinal dimension
and h is an upper bound on the wall thickness. As a consequence, the shell can be char
acterized as a slender thin-walled beam. In addition, it is assumed that the variation of the
material properties over distances of order d in the axial direction are small relative to their
variation in the circumferential direction. The material properties, considered anisotropic,
are allowed to vary both in the circumferential and the thickness directions. Finally, the
shell thickness itself is allowed to vary along the circumference.

COORDINATE SYSTEM AND KINEMATIC VARIABLES

Global and local coordinate systems are introduced, denoted by Oxyz and OIXIVS,
respectively, as depicted in Fig. l. The axis O,s is defined by the tangent to the midline in
the plane of the cross section in a counterclockwise direction, while 0lV is defined by the
outward normal to the midline, taken in the same plane. The axis 01X, is taken parallel to
Ox. At any point of the cross section, the displacements can be expressed with respect to
either coordinate system. Four global kinematic variables are defined at a cross sectional
level, denoted as VI' V 2, V 3 and cp, and representing the averaged displacements along
the Ox, Oy and Oz axes and the average cross sectional rotation around the Ox axis,
respectively.

CONSTITUTIVE RELATIONSHIPS

A displacement field consistent with a hypothesis of in-plane nondeformabilty of the
cross section, but allowing for out-of-plane warping is derived using an asymptotic vari
ational method. The resulting constitutive equations can be expressed as
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(2)

where T, M x, My and M zrepresent the axial force, torsional moment and bending moments,
respectively. The cross sectional stiffness, denoted by Cij, are formulated in terms of closed
form integrals of the material constants and geometry and, for convenience, are provided
in Appendix A. The prime associated with the kinematic variables denotes differentiation
with respect to x.

EQUATIONS OF MOTION

The equations of motion are obtained using Hamilton's principle. For the case of free
vibration, the resulting homogeneous coupled system of equation is:

CllU'{+C12CP"+C13U~'+C14U~'-mCUl= 0

C12 U'{ + CnCP" +C23 U~'+C24 U~' -Icp-SzU3+SyU2 = 0

C13U~' +C23 CP'" +C33 U~" + C34 U;" +Szcp+meU3 = 0

C 14 U;" +C24 qJ'" +C34U~"+C44U~"-SA+mc U2 = 0 (3)

The coefficients I, Sy, Sz and me are also defined in Appendix A based upon material
properties, lay-up and cross section characteristics. Superscript dot denotes derivative with
respect to time.

PARTICULAR CASES

A closed form solution for the most general case, corresponding to nonzero coupling
coefficients in the equations of motion, is not available. However, particular choices of
cross sectional shape and lay-up can generate cases of interest in which some of the
coefficients vanish. The corresponding form of the equations of motion exhibits fewer
coupling terms, allowing a closed form solution. A numerical solution is, of course, an
option for all cases.

Two particular configurations, corresponding to specific choices of lay-up have been
considered by Armanios and Badir (1995). The first one, designated Circumferentially
Uniform Stiffness (CUS), consists of a lay-up that produces the same membrane stiffness
coefficients with respect to the local coordinate system at any point of the cross section.
The second lay-up is designated Circumferentially AntiSymmetric (CAS). It is characterized
by membrane shear coupling stiffness terms that are antisymmetric with respect to the
local coordinate system, with all other membrane stiffness terms being symmetric. The
symmetryjantisymmetry conditions refer to points on the cross section located at symmetric
positions with respect to the plane Oxy.

CIRCUMFERENTIALLY UNIFORM STIFFNESS (CUS)

A typical CUS laminated composite lay-up can be described in the local coordinate
system as [8]" along the entire circumference of the cross section. For a rectangular cross
section, the CUS lay-up leads to cross sectional properties characterized by
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C 13 = C I4 = C23 = C24 = C 34 = 0

Sy = Sz = 0

As a consequence, the equations of motion reduce to

C ,2 U'{+C22 qJ"-IIjj = 0

C 33 Ut'+mJj 3 = 0

C44U~"+mJj2 = 0

which consist to two uncoupled bending equations and a coupled set of equations for
extension-twist.

CIRCUMFERENTIALLY ANTISYMMETRIC STIFFNESS (CAS)

An example of a laminated composite lay-up for this case is a combination of [8]n
along the cross section top halt, z > 0, and [- 8]n along the bottom half. The CAS used by
Armanios and Badir (1995) consists of [8b in the top wall, [- 8hn in the bottom wall and
[8/ - 8]n in the vertical walls. The numerical results presented in the present work are based
on this lay-up. The CAS configuration for a rectangular cross section has the following
properties

which reduce the system of equations to

C 22 rp"+C23 Ut-IIjj = 0

C23qJ"'+C33Ut'+mJj3 = 0

C44U~"+mc02 = 0

where the extension response is uncoupled, as well as the bending about the Oz axis, while
the bending about the Oy axis is coupled with twist.

SOLUTION AND RESULTS

The exact solutions for the homogeneous equations of motion corresponding to the
free vibration of a cantilevered beam are considered in this work.

CIRCUMFERENTIALLY UNIFORM STIFFNESS (CUS)

The CDS configuration leads to a set of uncoupled equations ofmotion, corresponding
to bending in two orthogonal planes, and a set of two coupled equations of motion for
extension-twist. The solution process for the uncoupled bending equations is straight
forward. The solution of the coupled set of equations, however, deserves some attention.

Starting from the coupled equations of motion for the extension-twist vibration,
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and assuming a general solution in the form of

one obtains the characteristic equation of the system as

Denoting

a = (C1,C22 -CT2)

b = (C 1 ,I+C22 mc )

c=mJ

the solutions can be expressed as

Yl,2 = w 2a
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with the understanding that the plus sign is associated with Y, and the minus with J2. In the
limiting case when C l2 -> 0, it can be observed that, if CllI > Cnmn then

which indicates that the YI root is associated with the axial-mode dominated vibrations,
while the J2 root is associated with the torsionally dominated vibrations. If, on the other
hand, CllI < C22mc the roles are reversed, while if CllI = Cnmn Yl = Y2 and the association
can be made either way.

Based on physical considerations, a, band c are always positive. On the other hand,
simple algebra shows that 0 :::; (b2 -4ac) :::; b2

, which leads to the conclusion that Yl.2 will
both be always real, and YI,2 :::;0, Therefore, the four roots Ai = 1,4 of the characteristic
equations will always be of the form

Al,2 = ±iA 1

A3,4 = ±iA2

where

the minus sign being associated with subscript 1 and the plus sign with subscript 2. The
general solution of the system can now be expressed as
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UI (x, t) = {U II cos(Alx) + U I2 sin(A] x) + Ul3 cos(A2 x) + UI4 cos(A2x)} eiwt

({J(x, t) = {({Jj cos(A I x) + ({J2 sin(A j x) + ({J3 cos(A2x) + ({J4 cos(A 2x)} eiwt

Imposing cantilevered boundary conditions one obtains the characteristic determinant,
expressed as

(1)

which, in turn, leads to

A _ (2k+ l)n
lk - 2L

(2k+ l)n
A 2k = 2L k = 0, 1,2, ...

The natural frequencies of the system can then be obtained as

Wlk=(2k+l)nJ 2a
2L b-Jb2-4ac

W2k = (2k+ l)n J 2a
2L b+Jb2-4ac

or, in a more concise form

k = 0, 1,2, ...

(2k+l)nJ 2a
Wk= 2L b+Jb2-4ac k=0,1,2, ...

Based upon the association we have established between the roots YI and Y2, and the type
of vibration they correspond to, we now have a criterion for interpreting the signs in the
final formula for the natural frequencies. If C j LI > C22mo then the minus sign will generate
natural frequencies for the axial-mode dominated vibrations, while the plus sign will
generate natural frequencies for torsionally dominated vibrations. Again, if CIII < C22mc

the roles are reversed and if CllI = C22m,., Yl = Y2 and the natural frequencies can be
assigned to either type of mode, the values being numerically equal. It is worth noting that
eqn (1) is cast as the product of the characteristic equations resulting from the decoupled
motions (C12 = 0). This observation, not generally valid for other cases of coupling, will be
discussed in the following for the CAS case.

CIRCUMFERENTIALLY ANTISYMMETRIC (CAS)

The CAS configuration leads to a set of uncoupled and a set of two coupled equations
of motion. The uncoupled equations correspond to axial extension and one bending,
respectively, while the coupled system describes the bending-twist vibrations.

The solution process for the uncoupled equations is straightforward. The coupled case
is discussed in the following.

Starting from the coupled equations of motion for the bending-twist vibration,

C22({J"+C23U"'3-Iq5 = 0

C23 ({J'" + C33 Ut' + me U3 = 0

and assuming a general solution in the form of
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U3 (x, t) = 0 3 eAX eiwt

cp(X, t) = ({J e)'x eiwt

one obtains the characteristic equation of the system as

Denoting

a = (C22 C33 - CL)

b = W
2C 33 /

the equation can be written as

ay3 +by 2 -cy-d = 0

3111

(2)

(3)

Based on physical considerations, a, b, and c and d are always positive.
The roots of eqn (3) can be expressed in closed form, based upon the values of the

coefficients. However, as the expressions are extremely intricate, an attempt to use those
roots in a manner similar to that for the CDS case leads to a characteristic determinant
that cannot be solved explicitly for w. Consequently, a closed form solution for the bending
twist vibration cannot be obtained.

The problem will be solved in three ways. While both the first and the second solutions
are exact, the first one offers less insight into the characteristics of the system. We therefore
choose to present the second one in more detail. The third solution, approximate, uses
observations made while developing the second solution to substantiate a simplifying
assumption. Numerical solutions for the coupled bending-twist vibration of a CAS canti
levered beam are obtained using a PC-based version of the computer code Mathematica®
(Wolfram, 1991). The code allows for both symbolic manipulations and numerical com
putations with arbitrary precision.

The properties of the cantilevered beam are provided in Table 1.

Table 1. CAS beam properties

Exterior width
Exterior height
Length
Ply thickness
Number of piles
Ell
E22 = E33

G12 = Gn
G23

VI2 = Vn
V23

p

24.21 10- 3 m (0.953 in)
13.46 10- 3 m (0,537 in)
0.84455 m (n25 in)
127 10 -6 m (0.005 in)
6
142 GPa (20.59 Msi)
9.8 GPa (1.42 Msi)
6.0 GPa (0.87 Msi)
4.83 GPa (0.7 Msi)
0.42
0.50
1601.1 kg/m3 (1.501 1O-4 1b s2/in4

)
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SOLUTION 1

This solution is more general due to the fact that it does not take into account the
specific structure of eqn (2) and its coefficients.

The first step consists of solving for the six roots A" i = 1, 6 of the characteristic
equation. The solution is carried out by symbolic manipulations, the results being six rather
intricate expression. For the general case, these expressions evaluate to complex numbers.
The next step consists of expressing the general solution of the system as

Imposing the cantilevered boundary conditions on the solutions and making use of
the relationships between U3" qJ, and A" i = 1, 6 stemming from the requirement that the
differential equations be identically satisfied, one obtains the characteristic determinant in
a symbolic form. The complexities of the expressions involved are prohibitive for hand
calculation.

It is not possible to explicitly solve for the roots ill of the characteristic determinant in
the above equation. Therefore, a numerical solution is obtained, using predefined pro
cedures available in Mathematica@.

Once a root ill is found, the space-domain eigenvalues A" i = 1, 6 and the corresponding
singular system matrix are numerically evaluated. A call to a linear system solving procedure
then generates the associated eigenvector. A calculation with 50 digit precision overcame
numerical difficulties associated with this last step. The resulting components of the
eigenvector, representing the coefficients of the various eigenfunctions, can be normalized,
and, as a final step, either through direct inspection or by the use of the eigenvectors to
generate the animated mode shape one can identify the mode as being bending-dominated
or torsion-dominated.

SOLUTION II

This method is a refined version of the previous one. It takes into account the specific
structure of the characteristic equation, providing more insight.

Based on Ref. 3, eqn (3) can be reduced to the standard form

x 3 +px+q = 0

by the substitution

b
y=x-~

3

where

p = ~(-3c-b2)

q = #2b3 +9bc-27d)

The nature of the solutions can be now identified based upon the sign of the quantity

If b < 0 there are three real and unequal roots; if b = 0 there are three real roots of
which at least two are equal: finally, if b > 0 there are one real root and two conjugate
imaginary roots. However, the expression for b is intricate and no general statement
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Fig. 2. The variation of" vs w, for CAS with e= 30°.

regarding its sign seems possible. Direct evaluation shows that there exist, generally, com
binations of arbitrary numerical values for a, b, c, d and w for which b takes either sign.
However, restricting the coefficients a, b, c and d to physically meaningful values and
plotting the variation of b vs w we have always obtained the result <5 < O. A typical plot,
corresponding to a fiber angle () = 30° is shown in Fig. 2. Therefore, the cubic equation has
three real distinct roots and, based upon the signs of the coefficients it follows that they can
only be one positive and two :J.egative. The roots for this case are

IP (cI> 2kn)
Xk = 2'./ - "3cos 3 + -3-

where

and the minus sign is to be used if q is positive and the plus otherwise.
The roots A;, i = 1, 6 will result, therefore, as ± ik" ± ik2 and ±k3, respectively, and

the general solution of the coupled system can be expressed as

U3(X, t) = {U3l sin(k] x) +U32 cos(kjx) +U33 sin(k2 x) + U34 cos(k2x)

+ U3S sinh(k3x) + U36 cosh(k3x)} eiwt

<(J(x, t) = {<(J, sin(k jx) + <(J2 cos(k] x) + <(J3 sin(k2x) + <(J4 cos(k2x)

+ <(Js sinh(k3x) + <(J6 cosh(k3x)} eiW1

One important remark at this point is that for all the combinations of beam cross
sectional properties investigated, k 3 and one of k] or k 2, depending upon the choice of
subscript assignment, have almost identical values over a considerable range of w. This
behavior is illustrated in Fig. 3, where k2 is very close to k 3 for a range of w of up to 20,000
rad/s. This observation will be used in the development of the approximate solution.

Imposing the cantilevered boundary conditions on the solutions and making use of
the relationships between U 3;, <{Ji and A;, i = 1, 6 stemming from the requirement that the
differential equations be identically satisfied, one obtains the characteristic determinant in
a symbolic form, which can be reduced to
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(4)

The expression for Ll(kb k2, k 3), provided in Appendix B, does not explicitly depend upon
w.

The characteristic determinant, however, cannot be solved in a manner similar to the
case of an isotropic cantilevered beam, where it reduces to

cos(kL) cosh(kL) = -1

for bending vibrations and it is expressed by one of the terms in eqn (1) for axial and
twisting vibrations. The fundamental difference is that the solutions to eqn (4) form, in
principle, a double infinity of triplets (k[, k 2, k3). Of all the triplets, only the ones that
simultaneously generate the six roots of eqn (2), Al,2 = ± ik b ,13,4 = ± ik2 and ,15,6 = ±k 3

corresponding to some real value w, should be retained.
A numerical solution, using a predefined root finding routine is chosen. Plotting the

determinant value, in this case a real number, vs wallows one to bracket each successive
root in an interactive manner.

From this point the solution follows the steps described in the previous section. As
expected, the results obtained by using either solution are the same.

As an illustration of this method, we expand on the CAS example of Armanios and
Badir (1995), by computing the natural frequencies of free vibration as a function of the
lay-up angle parameter, e. The numerical values are provided in Table 2 and plotted in

Table 2. CAS natural frequencies, in Hz

Ply
Angle,
degrees BI B2 B3 B4 B5 B6 B7 B8 Tl T2

0 43.76 274.22 767.83 1504.63 2487.27 3715.55 5189.49 6909.08 483.17 1449.51
15 30.57 191.10 532.73 1040.05 1700.65 2520.02 3458.09 4559.52 701.76 2113.63
30 19.92 124.74 348.74 681.56 1124.55 1673.71 2323.84 3083.68 862.68 2593.55
45 14.69 92.03 257.56 504.35 833.49 1243.28 1733.91 2302.39 782.42 2352.00
60 12.52 78.43 219.59 430.23 711.14 1061.96 1482.69 1970.85 660.07 1983.03
75 11.70 73.30 205.25 402.20 664.85 993.12 1387.01 1846.53 557.98 1673.97
90 11.49 72.01 201.64 395.14 653.19 975.75 1362.83 1814.41 483.17 1449.51
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Fig. 5. Mode shape BI for CAS, e= 30e
•

Fig. 4. The symbols BI-B8 denote bending-dominated modes, whereas TI and T2 denote
twisting-dominated modes. For lower modes, both the numerical values of the eigenvectors
and the animated mode shape allow a clear identification of the dominant component. For
higher modes, however, both types of deformation can be recognized as having similar
contribution. This is illustrated for () = 30° where the mode shapes associated with B1, B5
and Tl appear in Figs 5-7 by plotting the midplane displacements. While Figs 5 and 7
show dominant first bending and twisting deformations, respectively, the fifth bending
mode (Fig. 6) is highly coupled.

SOLUTION III

This approximate solution is based upon the previous observation regarding the
variation of k], k2 and k3• If one substitutes k3 for k2 in eqn (4), the results is

It follows that either
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Fig. 6. Mode shape B5 for CAS, (] = 30°.

Fig. 7. Mode shape Tl for CAS, (] = 30°.

Fig. 8. Mode shape B5 for CAS, (] = 30c
, long beam.
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Table 3. Comparison of approximate and exact natural frequency solu
tions for CAS, e= 30C

Approximate
Exact solution, Percentage

solution, Hz Hz difference

BI 19.92 19.92 0.00%
B2 124.74 124.95 0.17%
Tl 862.68 861.68 -0.12%
T2 2593.55 2586.69 -0.26%
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(2m+ l)n
2L

m = 0, 1,2, ...

or k 3 is a solution of the beam bending equation

for which the first few numerical solutions are well-known. From this observation it follows
that for this case an approximate solution could be cast as the prod~ct of decoupled bending
and twisting behavior.

Solving eqn (2) for w results in

w 2 = - (C22 mJ2 -C33 IA4
) + J(C22 m,A2

- C33 D.4f +4mJ(C22 C33 -C~3)A6
2mJ - 2mJ

(5)

By substituting A= ±ikj, and A = ±k3 into eqn (5) and using only the plus sign the
approximate values of the natural frequencies of the system are obtained. A comparison of
the frequencies Bl, B2, Tl and T2 with the results from Table 2 and the associated
percentage differences appear in Table 3. This indicates that, at least for a range of
parameters of practical interest, the quasi-decoupled model corresponding to k 2 = k 3 yields
excellent results. The characteristic determinant in this case is similar to the CUS and
could be constructed as the product of the uncoupled bending and twisting characteristic
determinants.

FINITE ELEMENT VALIDAnON

In order to validate the accuracy of the procedure proposed for the CAS case, a
comparison with finite element results was performed for a slender, thin-walled beam in a
cantilevered configuration. The cross sectional, lay-up and material properties of the beam
considered were identical with the ones used in the previous section. The length of the
beam, however, was increased to a value of 4 m in order to ensure compliance with the
assumptions in eqn (1).

The finite element analysis has been conducted by using the code ABAQUS, with the
beam modeled by using 900 rectangular reduced integration shell elements of the type
designated S4R.

The first six natural frequencies of free vibration obtained by the two methods are
compared in Table 4 as a function of the lay-up angle parameter, e. The agreement between
the two sets of predictions is excellent. The symbols Bl-B6 denote bending-dominated
modes, where Tl denotes twisting-dominated mode. For all modes, the numerical values
of the eigenvectors and the animated mode shapes, in the case of the proposed procedure,
as well as the graphical representation of mode shapes, in the case of the finite element
analysis, allow a clear identification of the dominant component. By comparison with the
shorter beam, studied in previous sections, it was observed that the amount of coupled
deformation shown by corresponding mode shapes decreases. This can be observed by
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Table 4. Comparison of CAS natural frequencies, in Hz

Ply Angle,
degrees Analysis B1 B2 B3 B4 B5 B6 T1

0 Analytical 1.95 12.22 34.23 67.07 110.88 102.30
ABAQUS 1.92 12.05 33.67 65.77 108.27 102.13

15 Analytical 1.36 8.54 23.91 46.85 77.42 115.6
ABAQUS 1.34 8.39 23.53 46.20 76.58 114.77

30 Analytical 0.89 5.57 15.58 30.54 50.47 75.39
ABAQUS 0.87 5.46 15.33 30.13 50.00 75.08

45 Analytical 0.65 4.10 11.49 22.52 37.22 55.60
ABAQUS 0.65 4.05 11.35 22.31 37.03 55.61

60 Analytical 0.56 3.50 9.79 19.19 31.72 47.37
ABAQUS 0.55 3.47 9.73 19.12 31.74 47.66

75 Analytical 0.52 3.27 9.15 17.93 29.64 44.28
ABAQUS 0.51 3.26 9.13 17.95 29.78 44.71

90 Analytical 0.51 3.21 8.99 17.61 29.11 43.50
ABAQUS 0.51 3.20 8.98 17.65 29.29 43.96

comparing the mode shape B5 for the long beam, for e= 30°, represented in Fig. 8, with
its counterpart for the short beam, represented in Fig. 6. The comparison suggests that for
a given set of values for cross-sectional beam stiffnesses the effect of coupling on mode
shapes decreases with the increase in beam length.

CONCLUSIONS

A solution procedure has been developed for the prediction of natural frequencies and
mode shapes of slender thin walled laminated composite beams. The influence of coupling
on the response of laminated composite box beams with extension-twist or bending-twist
coupling has been presented. Ofsignificance is the development of a simple quasi-decoupled
solution procedure that provides accurate predictions of natural frequencies with little
computational effort. A comparison with results from a finite element analysis validates
the proposed procedure. The comparison of two beams of identical cross section, material
characteristics and lay-up and different lengths suggests that the effect of coupling on the
mode shapes decreases with beam length.
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APPENDIX A

The closed form expressions for the stiffness coefficients in eqn (2) are:

_f( -B') (f(Blc) ds)' _ f(Blc) ds
CII - A C ds+ ,. CIl -,.. A"

r(l/C) ds r(l/C) ds

i( B') f(BfC) dsf(BfC)zds i( B') f(BfC) dsf(BIC)yds
C l3 = -'1 A- C zds- f(lfC)ds C'4 = -'1 A- C yds- f(l/C)ds
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c __1_A' __ f(BIC)zds __ f(Blc).Y ds _ f( _B') _, (f(Blc)z ds)'
22 - "(I./C) ds ' C23 -" A, C'4 -" A, C" - A C ~ ds+ "r rOIC) ds r(l/C) ds rO/C) ds

f( B') f(BIC)ydsf(BIC)zds f( B') (f(BIC)yds)'
C'4= A-~ yzds- C44 = A-~ y'ds---:---

C fOIC) ds C fO/C) ds

where

and A,j are the membrane, in-plane stiffnesses of the laminate and A, represents the area enclosed by the midline
of the cross section. The inertia-related coefficients are given by

m, = fPh(s) ds 1= fp(y' + z')h(s) ds Sy = fpzh(s) ds S, = fpyh(s) ds

with h(s) representing the wall thickness and p the material density.

APPENDIX B

Reduced form of the characteristic determinant for the CAS configuration:

tJ.(k" k" k 3 ) = 2kf k~ (k~ - kj)(ki - kj) cos(k,L) + 2k~k~(kj -k1)(k1-k~) cos(k, L)

+2kfk~(k~ -kj)(ki -kj) cosh(k3 L) +k,k, (kf +k~)(k1-kj)(kj-ki) sin(k, L) sin(k,L) cosh(k3 L)

+k,k3 (ki -ki)(ki -kf)(k~-k~) sin(k,L) cos(k,L) sinh(k,L)

+k,k3(k~- ki)(ki - k~)(k1-k~) cos(k, L) sin(k,L) sinh(k,L)

- [ktk~(k1 +k~ +2k~) -k~k~(k~ +kj - 2k1)+k1k~(kt -kj + 2k~)]


